Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Low-Complexity Sequential Inference for Dirichlet Process Mixture Models

We develop a sequential low-complexity inference procedure for the Infinite Gaussian Mixture Model (IGMM) for the general case of an unknown mean and covariance. The observations are sequentially allocated to classes based on a sequential maximum a-posterior (MAP) criterion. We present an easily computed, closed form for the conditional likelihood, in which the parameters can be recursively upd...

متن کامل

Spiked Dirichlet Process Priors for Gaussian Process Models.

We expand a framework for Bayesian variable selection for Gaussian process (GP) models by employing spiked Dirichlet process (DP) prior constructions over set partitions containing covariates. Our approach results in a nonparametric treatment of the distribution of the covariance parameters of the GP covariance matrix that in turn induces a clustering of the covariates. We evaluate two prior co...

متن کامل

Distributed Inference for Dirichlet Process Mixture Models

Bayesian nonparametric mixture models based on the Dirichlet process (DP) have been widely used for solving problems like clustering, density estimation and topic modelling. These models make weak assumptions about the underlying process that generated the observed data. Thus, when more data are collected, the complexity of these models can change accordingly. These theoretical properties often...

متن کامل

Fast search for Dirichlet process mixture models

Dirichlet process (DP) mixture models provide a flexible Bayesian framework for density estimation. Unfortunately, their flexibility comes at a cost: inference in DP mixture models is computationally expensive, even when conjugate distributions are used. In the common case when one seeks only a maximum a posteriori assignment of data points to clusters, we show that search algorithms provide a ...

متن کامل

Dirichlet Process Mixture Models for Verb Clustering

In this work we apply Dirichlet Process Mixture Models to a learning task in natural language processing (NLP): lexical-semantic verb clustering. We assess the performance on a dataset based on Levin’s (1993) verb classes using the recently introduced Vmeasure metric. In, we present a method to add human supervision to the model in order to to influence the solution with respect to some prior k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2019

ISSN: 1936-0975

DOI: 10.1214/18-ba1119